Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper introduces Disturbance-Aware Redundant Control (DARC), a control framework addressing the challenge of human–robot co-transportation under disturbances. Our method integrates a disturbance-aware Model Predictive Control (MPC) framework with a proactive pose optimization mechanism. The robotic system, comprising a mobile base and a manipulator arm, compensates for uncertain human behaviors and internal actuation noise through a two-step iterative process. At each planning horizon, a candidate set of feasible joint configurations is generated using a Conditional Variational Autoencoder (CVAE). From this set, one configuration is selected by minimizing an estimated control cost computed via a disturbance-aware Discrete Algebraic Riccati Equation (DARE), which also provides the optimal control inputs for both the mobile base and the manipulator arm. We derive the disturbance-aware DARE and validate DARC with simulated experiments with a Fetch robot. Evaluations across various trajectories and disturbance levels demonstrate that our proposed DARC framework outperforms baseline algorithms that lack disturbance modeling, pose optimization, or both.more » « lessFree, publicly-accessible full text available June 1, 2026
-
This paper presents the development of a novel control algorithm designed for tasks involving human-robot collaboration. By using an 8-DOF robotic arm, our approach aims to counteract human-induced uncertainties added to the robot's nominal trajectory. To address this challenge, we incorporate a variable within the regular Model Predictive Control (MPC) framework to account for human uncertainties, which are modeled as following a normal distribution with a non-zero mean and variance. Our solution involves formulating and solving an uncertainty-aware Discrete Algebraic Ricatti Equation (ua-DARE), which yields the optimal control law for all joints to mitigate the impact of these uncertainties. We validate our methodology through theoretical analysis, demonstrating the effectiveness of the ua-DARE in providing an optimal control strategy. Our approach is further validated through simulation experiments using a Fetch robot model, where the results highlight a significant improvement in performance over a baseline algorithm that does not consider human uncertainty while solving for optimal control law.more » « less
-
Humans are well-adept at navigating public spaces shared with others, where current autonomous mobile robots still struggle: while safely and efficiently reaching their goals, humans communicate their intentions and conform to unwritten social norms on a daily basis; conversely, robots become clumsy in those daily social scenarios, getting stuck in dense crowds, surprising nearby pedestrians, or even causing collisions. While recent research on robot learning has shown promises in data-driven social robot navigation, good-quality training data is still difficult to acquire through either trial and error or expert demonstrations. In this work, we propose to utilize the body of rich, widely available, social human navigation data in many natural human-inhabited public spaces for robots to learn similar, human-like, socially compliant navigation behaviors. To be specific, we design an open-source egocentric data collection sensor suite wearable by walking humans to provide multimodal robot perception data; we collect a large-scale (~100 km, 20 hours, 300 trials, 13 humans) dataset in a variety of public spaces which contain numerous natural social navigation interactions; we analyze our dataset, demonstrate its usability, and point out future research directions and use cases.11Website: https://cs.gmu.edu/-xiao/Research/MuSoHu/more » « less
An official website of the United States government
